Evaluating the Quality of Randomness and Entropy in Tasks
Supported by Large Language Models

Rabimba Karanjai
rkaranjai@uh.edu
Department of Computer Science
University of Houston
Houston, Texas, USA

Lei Xu
xuleimath@gmail.com
Department of Computer Science
Kent State University
Kent, Ohio, USA

Abstract

The rapid advancement of large language model (LLM) technology
has led to diverse applications, many of which inherently require
randomness, such as stochastic decision-making, gaming, sched-
uling, Al agents, and cryptography-related tasks. However, the
capabilities of LLMs in handling randomness, particularly in gen-
erating and utilizing random numbers effectively, remain unclear.
This paper investigates the capacity of LLMs for handling tasks that
involve randomness through a series of experiments. We designed
a set of experiments that consider various factors that can influ-
ence an LLM’s performance in tasks involving randomness, such
as accessibility to external tools, types of tasks, model states (fresh
vs. non-fresh), and prompting strategies. The experiments cover a
range of tasks, including generating random numbers, generating
random strings such as passwords, shuffling items, and evaluating
the quality of randomness using entropy and the NIST randomness
test-suite. Our findings reveal that while LLMs can generate out-
puts that exhibit some degree of randomness, their performance
is inconsistent and often deviates significantly from the expected
behavior. The analysis of the experimental results highlights key
limitations and areas where improvement is needed for the LLMs
to effectively handle tasks involving randomness.

Keywords
LLM, randomness, entropy, agents, NIST

ACM Reference Format:

Rabimba Karanjai, Yang Lu, Ranjith Chodavarapu, Lei Xu, and Weidong
Shi. 2025. Evaluating the Quality of Randomness and Entropy in Tasks
Supported by Large Language Models. In . ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

Conference’17, Washington, DC, USA

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-X/YYYY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Yang Lu
shisunny.yang@gmail.com
Department of Computer Science
University of Houston
Houston, Texas, USA

Ranjith Chodavarapu
rchodava@kent.edu
Department of Computer Science
Kent State University
Kent, Ohio, USA

Weidong Shi
wshi3@uh.edu
Department of Computer Science
University of Houston
Houston, Texas, USA

1 Introduction

Large language models (LLMs [32]) have found numerous applica-
tions, such as natural language processing (NLP), machine transla-
tion, source code generation and translation, question-answering,
chatbots [28], health-care training, customer service [20], time-
series prediction, etc.

Recently, there has been increased interest in building autonomous
agents using LLM, which is used as the agent’s central computation
engine. To support LLM based agents, there are several supporting
components such as planning, memory, and action [18, 35].

LLM-based agents can be used for a wide range of applications
such as co-piloting operating systems [23], playing games [17],
Web agents [39], making API calls [13] and offering cyber security
suggestions [38]. A recent news shows a surprising use case where
LLMs are used to generate lottery tickets.

Random number generation plays a crucial role in various ap-
plications, including cryptography, Web protocols such as security
tokens and session identifiers, science simulations, task scheduling,
resource allocations, financial asset management, optimizations,
and computer games. The quality of randomness is essential for
ensuring security, fairness, and trustworthiness in these applica-
tions [10].

LLMs are not designed inherently for the generation of random
numbers. Their underlying architecture is deterministic, which
means that given the same input, they may produce the same output.
However, recent studies have explored the potential of LLMs to
exhibit randomness through techniques such as sampling from
probability distributions and incorporating stochastic elements in
their decision-making process [10, 34].

In this paper, we investigate the capability of LLMs to handle
tasks that require randomness in the responses. We design a set of
experiments that consider various factors that can influence the per-
formance of an LLM in random tasks, such as types of tasks (directly
or indirectly involving random sources), model states (fresh vs. non-
fresh) and prompting strategies. Our analysis includes evaluating
the quality of randomness using metrics such as entropy, and com-
paring LLM-generated outputs to those produced by established
random number generators and algorithms.

Our research has shown essential insights into the abilities and
limitations of LLMs in generating random outputs. We discovered

https://orcid.org/0000-0002-6705-6506
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA

that while LLMs can mimic randomness to a certain extent, they
still struggle to achieve high quality randomness due to its inherent
limitation in the algorithms and potential biases. This finding has
significant implications for the scientific community, as it highlights
the need for further research and development to enhance the
randomness capabilities of LLMs, especially for applications where
true randomness or cryptographically strong random source is
critical, such as cryptography-oriented Al agents and scientific
simulations (LLMs for sciences). Moreover, our research provides
valuable guidance for the developers and researchers working with
LLMs, enabling them to understand better and control the quality of
randomness in responses of these models for various applications.
Our main contributions include:

o A benchmarking suite with multiple tasks that involve run-
ningdonmess to test the quality of randomness generated by
LLMs!.

e A comparative analysis of LLMs and local PRNGs, highlight-
ing the performance differences between LLMs and local
methods in creating high-quality randomness.

o An analysis of the impact of external tools and type of tasks
on an LLM’s ability to handle randomness reveals that LLMs
can generate more random outputs when utilizing external
tools.

e A discussion of potential solutions to improve the random-
ness of LLMs, such as incorporating entropy-based sampling
and parallel chain-of-thought decoding.

2 Background

2.1 The Need for Entropy and Randomness

GenAl and Large Language Models (LLMs) have achieved extra-
ordinary success across a wide range of application tasks such as
question answering, document summarization, decision-making,
code generation, reasoning, etc. Increasingly, GenAl models have
been applied to tasks that demand entropy and randomness in the
responses. Emerging use cases like LLM based game engines [36],
simulations in various domains, GenAl for sciences, LLM based API
agents [29], industrial optimizations, LLMs for making schedule
decisions, all of these application tasks involve producing outputs
with randomness. For example, random numbers are widely used
in security protocols like challenge-response mechanisms, Web to-
kens, security nonce generation, session identifiers. For robustness
and trustworthiness in security, it requires GenAl based Web agents
to support high quality randomness within these security proto-
cols. In the field of scientific simulations like biology and physics,
random number generators are crucial for simulating various con-
ditions or events. The quality of entropy used in GenAlI process
will have direct impacts on the accuracy of the scientistic modeling
and simulation outcome. For the tasks that involve scheduling and
statistical sampling, for instance, randomized clinical trials, random-
ized resource allocations, randomized task assignments, ensuring
good quality randomness is essential to avoid biases and guarantee
fairness. Many emerging finance and economic use case scenar-
ios of GenAl like randomized order execution, asset management
and risk management also require high quality randomness in the
outputs.

1Code and artifacts in GitHub. The link will be updated upon acceptance.

2.2 Randommness as a Trustworthiness Problem

While LLMs have demonstrated generating human-like text, the
inherent design of token generation still poses a challenge to pro-
ducing high quality random outputs to satisfy the needs of many
applications. LLMs are trained on massive datasets and learn to pre-
dict the most likely next word or token based on the input and their
training data. Research has shown that LLMs face challenges in
generating truly random distributions. Studies have suggested that
LLMs often exhibit biases and struggle to produce true randomness
when it is needed, especially in complex use case scenarios. The
lack of supporting reliable and good quality entropy can become a
major trustworthiness issue for any application aiming to leverage
LLMs for tasks where randomness is crucial to ensure fairness,
reduce bias, support robustness and provide security guarantee.

2.3 Evaluation of Randomness in LLM
Responses

With the emergence of randomness-controlled models, the effective-
ness of creating entropy in the related tasks has become a critical
issue, as it may lead to biased or discriminatory outputs [19]. To
address these challenges, various metrics have been proposed to
evaluate the randomness of LLM. Hopkins and Renda [16] offer two
sampling methods-non-autoregressive sampling (NARS) and au-
toregressive sampling (ARS), to evaluate the distribution sampling
capabilities of LLMs in two controlled domains: uniform random
number sampling and probabilistic context-free grammar (PCFG)
sampling. Notably, NARS demonstrates superior performance over
ARS in terms of error, variance, and containment metrics. However,
Hopkins and Renda did not consider the access of external tools,
like pseudo-random number generators (PRNGs), thus resulting
in substantial interference to the final conclusions. Liu [21] ex-
tends this line of research by instructing GPT-4 to generate either
a single number or a random sequence using varied prompts. It
reveals that GPT-4 attempts to compensate for the uniformity of
random numbers by sacrificing independence when functioning
as a random number generator. Despite tasks directly instructing
the LLMs to generate numerical values, common character-based
and shuffling-related tasks should also be considered when testing
the randomness of large language models. Hence, more types of
tasks involving entropy should be considered, taking into account
factors such as accessibility to external tools, types of tasks, model
states, and prompts. Furthermore, new metrics should be proposed
to accommodate the experiments of these different tasks.

3 Measuring LLMs’ Capability on Handling
Tasks Involving Randomness

Analyzing the way that an LLM handles tasks involving randomness
directly (either static or dynamic) is challenging due to the system’s
complexity and limited access to its internal details when it is closed
source. Therefore, we adopt an indirect approach. Specifically, we
treat an LLM as a black box and design a series of experiments
considering the major factors that may influence its performance
in the tasks that involve randomness.

Evaluating the Quality of Randomness and Entropy in Tasks Supported by Large Language Models

3.1 Factors Considered in the Experiments
Design

We consider multiple factors in the design of our experiments to en-
sure a comprehensive measurement of the ability of LLMs to create
randomness. These factors help to isolate the specific capabilities
of LLMs and understand how different conditions might affect their
performance in generating random outputs.

Accessibility to external tools. LLMs can be augmented with ex-
ternal tools, such as pseudo-random number generators (PRNGs),
to enhance their abilities in various tasks [16]. In the context of
randomness, access to a PRNG can significantly influence an LLM’s
performance. We evaluate LLMs both with and without access to
a PRNG to investigate whether they can generate random num-
bers independently or benefit from a traditional PRNG’s assistance.
This factor is crucial for understanding the inherent capabilities of
LLMs in generating random numbers and whether they can achieve
reasonable randomness without relying on external tools.

Types of tasks. Tasks involving randomness vary significantly
in complexity, the types of PRNG required (statistical PRNG, cryp-
tographic PRNG, etc.), and how they utilize random numbers. It is
often not obvious to the LLMs how randomness should be applied
to meet the goals of specific tasks based on the prompt instructions.
In this work, we consider two categories of tasks:

o Direct tasks. These tasks explicitly require the generation of
random numbers. Examples include generating a sequence of
random integers within a specified range or producing a ran-
dom floating-point number between 0 and 1. This category
focuses on the LLM’s ability to generate random numbers
directly, a fundamental aspect of randomness in LLMs.

o Indirect tasks. These tasks require an LLM to utilize random
sources implicitly, often involving operations such as shuf-
fling or sampling. Examples include shuffling a deck of cards,
randomly selecting elements from a list, or generating ran-
dom permutations of a sequence. This category assesses the
LLMs’ ability to apply randomness in more complex scenar-
ios where random number generation is a means to achieve
a specific outcome.

By evaluating LLMs on both the direct and indirect tasks, we
aim to assess their ability to handle randomness across a spectrum
of applications.

Model states. The internal state of an LLM, influenced by its
previous interaction history, can affect its behavior on new tasks.
To account for this, we consider both “fresh” (newly initialized)
and “non-fresh” (previously used) LLM models in our experiments.
This distinction allows us to investigate whether prior experiences
influence an LLM’s ability to generate random outputs.

Interestingly, research suggests that LLMs might not only in-
herit human biases in randomness generation but could potentially
amplify them [34]. This highlights the challenges of achieving true
randomness in LLMs and the need for careful evaluation.

Prompts. Prompts are the only source for an LLM to receive
external task descriptions in the inference phase. Many works have
demonstrated that carefully designed prompts can lead to better
LLM responses [26]. For the same task involving randomness, it is

Conference’17, July 2017, Washington, DC, USA

very likely that different prompts result in different randomness
handling.

3.2 Experiment Categories

Based on the factors outlined above, we systematically evaluate
task types on an LLM’s ability to handle randomness, while also
considering the influences of model status. To ensure a comprehen-
sive evaluation, we included a variety of LLMs in our study, namely
OpenAT’s GPT-40, Google’s Gemini 1.5 Pro, Mistral Large(2047),
Gemma2 27b and Llama 3.1 8b. This selection allows us to evaluate
randomness generation capabilities across different models and
architectures.

To rigorously evaluate the capability of LLMs to handle tasks
that involve randomness and generate the output based on the
given task, we designed a series of experiments encompassing three
distinct task categories: numerical, character-based, and shuffling-
related. These categories were selected to represent different types
of applications for randomness, from basic number generation to
more complex tasks involving sequences and permutations. This
methodology draws inspiration from the existing research on evalu-
ating LLM sampling in controlled domains [16] and aims to provide
a comprehensive assessment of LLMs’ ability to exhibit randomness
across various scenarios.

3.3 Numerical Value Related Tasks

Random number generation is widely recognized as the most funda-
mental task associated with randomness. Our evaluation considers
LLM-based agents with and without access to a pseudo-random
number generator (PRNG). This allows us to investigate whether
LLMs can generate random numbers independently or benefit from
a traditional PRNG’s assistance, similar to the approach used in the
previous studies [10]. Furthermore, we vary the scale of the task,
including the size of the output (e.g., generating a single number
versus a sequence of numbers) and the range of random numbers
(e.g., integers within a specific interval, floating point values). This
manipulation of scale allows us to assess the impact of these factors
on the LLM’s performance and identify potential limitations in its
ability to generate random numbers across different magnitudes
and data types.

We employ statistical tests commonly used to evaluate random
number generators, such as the well-defined tests in the NIST ran-
domness test suite [5], to assess the quality of the generated random
numbers. These tests will help us determine if the distribution of
the LLM-generated numbers significantly deviates from a truly
uniform distribution, indicating potential biases or patterns in the
LLM’s outputs.

3.4 Characters Related Tasks

This category requires the LLM-based agent to manipulate charac-
ters randomly, such as generating random strings given a specified
alphabet (e.g., generating random passwords, or random sequences
of letters from the English alphabet). While this task can theoreti-
cally be reduced to random number generation by mapping char-
acters to numerical values, it remains unclear whether LLMs can

Conference’17, July 2017, Washington, DC, USA

effectively leverage this relationship. Our experiments aim to de-
termine whether LLMs can exhibit randomness in character-based
tasks without explicit reliance on numerical methods.

To evaluate the randomness of the generated character strings
such as passwords, we analyze their statistical properties, such as
the frequency distribution of individual characters and the presence
of recurring patterns or sub-strings.

3.5 Shuffling Related Tasks

Shuffling is a classic application of randomness with extensive re-
search in various domains, including card games, data analysis, and
algorithm design. The problem of card shuffling, while seemingly a
simple use case, has been intensively studied in the field of applied
statistics, not only due to its significance to ensure fairness in card
games, but also its applicability in diverse fields, ranging from game
design, data analysis to scientific research.

In card shuffling, a well-shuffled deck ensures that each player
has an equal chance of receiving any particular card or combina-
tion of cards. A strong uniform stopping time ensures that after
the stop, the deck is in a truly random state, regardless of how
it was initially arranged. Theoretical results have been obtained
to understand stopping times in the context of conventional card
shuffling techniques [7, 12, 33].

In this study, we evaluate LLMs on tasks analogous to shuffling
cards, such as assigning patients to doctors or permuting a set of
words. These tasks represent a higher complexity level than simple
number or character generation, requiring the LLMs to understand
and apply the concept of random permutations.

We analyze the generated permutations for uniformity and ran-
domness to assess the LLMs’ performance on shuffling tasks. We
compare the LLM-generated permutations to those produced by
a well-established shuffling algorithm to identify any biases or
deviations from the expected randomness.

By conducting these experiments across a range of tasks and
evaluating the results using appropriate statistical measures, we
aim to provide a systematic assessment of LLMs’ capacity for gener-
ating random output and identify potential areas for improvement
in their ability to exhibit true randomness. The scoring method
for the shuffle process is based on the minimum entropy of the
distances between each pair of cards after the shuffle is applied.
This effectively captures the idea that shuffling should maximize
statistical entropy, which is a measure of randomness that can
be calculated when the inner workings of the random system are
unknown.

Below is how we compute statistical entropy as a percentage of
the maximum possible entropy:

(1) N := number of cards in the deck

(2) Kjjq := after how many trials card i was distance d from card j

(3) H := percent of max entropy,

: -1, Kij kij .
min{~ S35 (57 logn-1 5745)10 < i j < N}
The above method has been used to evaluate the quality of different
card shuffling algorithms.

3.6 Direct Generation

We evaluate three specific domains to assess whether the LLMs can
generate randomness in their responses. Our goal, however, was

not only to deal with randomness generation, but also to investigate
how the LLMs handle tasks that require randomness as part of their
core function but were not asked to generate it directly like random
number sequence creation.

We instructed the LLMs to generate random numbers and then
apply the NIST randomness test-suite to evaluate whether they
could pass the randomness tests. Each LLM was prompted to gener-
ate 10000 random 8-bit integers. The prompts used were as follows:

e GPT-40 "Can you please create 10000 random positive inte-
gers in decimal format, the highest of which is 255

¢ Gemini and Others "Can you please create 10000 random
positive integers in decimal format, the highest of which is
255" with System Prompt "You are a true random number
generator. You will be asked to generate random numbers
in JSON format. Do not give any code or ideas. Only the
answer."

The generated sequences were then subjected to the Random
Number Test Suite [5] to assess the quality of randomness [34].

3.7 Evaluation Metrics

We utilized the Random Test Tool (RTT) [37] to assess the quality
of randomness in the number of sequences generated by the LLMs.
This tool provides a comprehensive suite of statistical tests designed
to evaluate various aspects of randomness, including uniformity,
independence, and unpredictability.

The tool implements the popular NIST Randomness Test Suite [8].
Compared with similar tools, RTT is user-friendly, easy to manipu-
late, and capable of delivering clear results to users. The set of NIST
Tests supported are.

Monobit (Chi2) This test is intended to see if the frequencies
of 1 and 0 across the entire n-bit sequence are approximately equal,
meaning that the proportion of 1s and 0s is close to half. If the
number of 0s and 1s are not the same, it is intended to see if their
difference falls within the limit of randomness.

Frequency in block This test is intended to ensure that fre-
quencies of 1 and 0 are evenly distributed across the entire n-bit
sequence.

Run Test This test is intended to see if the frequencies of runs
of 1s and 0s of various lengths would be within the limits of ran-
domness.

Longest run of Ones This test is intended to see if the frequen-
cies of the longest run of 1s of various lengths appearing in the
sequence are consistent with that expected for a random sequence.

Binary Rank This test is intended to see if the n-bit string has
repetitive patterns across its entire sequence. The n-bit string is
sequentially divided into N disjoint blocks, and it endeavors to see
linear dependence among its fixed length substrings of each block.

Linear Complexity A long-bit string is usually obtained from
an LFSR (Linear Feedback Shift Register). The bit sequence from
which a longer LFSR is obtained can be termed as random, while the
shorter LFSR indicates non-randomness. The linear complexity test
looks for the length of the LFSR and determines if the bit sequence
from which the LFSR is obtained is random or not.

Serial Test The serial test counts the frequency of all possible
overlapping m-bit patterns across the entire n-bit sequence, and

Evaluating the Quality of Randomness and Entropy in Tasks Supported by Large Language Models

Table 1: p-value Interpretation

Label p-value Interpretation
OK 0.1 <p <0.99 Test successful
SUSPECT | 0.01 <p <0.1 or 0.9 <p <0.99 Suggest to re-test
KO p <0.01 and p >0.99 Test failure

based on the deviations of each of the counts together, one intends
to see if the sequence can be termed as random or not.

Spectral The focus of this test is the peak heights in the Discrete
Fourier Transform of the sequence. The purpose of this test is to
detect periodic features (i.e., repetitive patterns that are near each
other) in the tested sequence that would indicate a deviation from
the assumption of randomness.

Sign This test checks the equal repartition of the data around
the median.

Given a random sequence, the tests calculate a p-value. The p-
value represents the probability of obtaining a distribution at least
as extreme as that observed. Then, the tool compares the p-value
to a threshold (0.01). If the p-value is lower than this threshold, it
implies that the probability of the observed behavior occurring by
chance is 1 - 0.01 (99%). For p-value < 0.01, a perfectly random
sample is expected to fail this test only 1% of the time. The tool
follows the default classification:

Interpretation of p-values and classification of results adhere to
the guidelines provided in the RTT documentation [5].

o OK: The test is successful if the p-value falls within the range
[0.1, 0.99]. This indicates that the observed distribution is
consistent with what would be expected from a truly random
sequence.

e SUSPECT: If the p-value is in the intervals [0.01, 0.1] or
[0.9, 0.99], it suggests a potential deviation from randomness.
Further investigation and re-testing are necessary to confirm
or reject the null hypothesis of randomness.

e KO: The test fails if the p-value is < 0.01 or > 0.99. This in-
dicates a statistically significant deviation from randomness,
suggesting that the sequence is likely not random.

3.8 Remark on Reproducibility

Reproducibility is a crucial property that facilitates trust in certain
applications of GenAl for instance, healthcare use cases, finance,
legal applications, many scenarios in various science domains. In
case that GenAl responses to application tasks depend on random
sampling, and entropy, reproducibility should be interpreted within
the context of the tasks. For instance, for card shuffling, it makes
more sense to define reproducibility as producing similar random
distribution of the shuffled cards after performing the same of num-
ber of card shuffles in each trial. For the tasks relying on random
sampling, reproducibility needs to be defined as reproducible distri-
bution of the outputs given the same experiment setting. This is the
interpretation of reproducibility that we have taken in the context
of this endeavor. During experiments, we conducted data collection
in multiple iterations to ensure consistent entropy measurements
across different trials.

Conference’17, July 2017, Washington, DC, USA

4 Experimental Results and Analysis

For our experiments, we choose a combination of open-weight
and closed-weight models. The open models allow us to dig more
deeply into their generation strategies and allow us to play with
the temperatures. Whereas for the closed models, we used both an
official API and a web-based interface to collect data.

4.1 Analysis of NIST Randomness Tests

This analysis compares the randomness quality of various Large
Language Models (LLMs) and local Python random number gener-
ators based on the results from the NIST randomness testsuit.

Table 2: Percentage of test outcomes for different random
number generators

Generation Methods and LLM OK SUSPECT KO

Local 8-bit numbers 87.78% 11.11% 1.11%
Local 1M data sample 91.11% 7.78% 1.11%
random.SystemRandom() 87.78% 11.11% 1.11%
secrets.randbelow() 88.89% 8.89% 2.22%
Gemini 15 30.56% 13.89% 55.56%
Phi-3 (Run 1) 22.22% 0% 77.78%
Phi-3 (Run 2) 25% 12.5% 62.5%
Gemma 2 27B 11.11% 0% 88.89%

4.1.1 Key Observations.

(1) Local Python Generators: The local Python random num-
ber generators (8-bit numbers, 1M data sample, SystemRan-
dom, and secrets.randbelow) performed significantly better
than the LLMs, with over 87% of tests passing (OK) for all
four methods.

(2) LLM Performance: The LLMs (Gemini 15, Phi-3, and Gemma
2 27B) showed poor randomness qualities, with a high per-
centage of failed (KO) tests.

(3) Gemini 15: Performed the best among the evaluated LLMs,
passing 30.56% of tests, but still significantly underperformed
compared to the local Python generators.

(4) Phi-3: Showed inconsistent results between two runs, with
Run 2 performing slightly better than Run 1.

(5) Gemma 2 27B: Demonstrated the poorest performance
among the measurable models, failing 88.89% of the tests.

(6) Honorable Mention: We tried to run these tests with llama
3.1 8b model as well. That did not pass any test.

The analysis reveals a clear distinction between the random-
ness quality of the local Python random number generators and
LLMs. Local Python methods consistently produced high-quality
random numbers, passing most statistical tests. In contrast, the
LLMs struggled to generate truly random sequences, with Gemma
2 27B performing particularly poorly.

These results suggest that LLMs, in their current state, are not
suitable for applications requiring high-quality random number
generation.

4.1.2 Qualitative Analysis. While the quantitative results provide
a statistical assessment of randomness, a qualitative analysis can
reveal further insights. Observing the generated sequences, we

Conference’17, July 2017, Washington, DC, USA

Number Occurrences in C:

bl

Figure 1: Gemini 1.5 Pro distribution of random numbers.

Occurences.

s n s 0 5 6 3 b &

Number Occurrences in CSV.

Ocurenss
IR R R N

Figure 2: Mistral Large(2047) distribution of random num-
bers.

Number Occurrences in CSV.

Figure 3: Gemini 1.5 with function calling (10k).

noticed certain patterns and tendencies that deviate from ideal ran-
domness. For example, some LLMs exhibited a slight bias towards
generating certain numbers or ranges of numbers more frequently
than others. This observation aligns with the previous research that
highlights the limitations of LLMs in accurately mimicking target
distributions [16]. This is specially relevant when talking about the
LLMs that try to generate random numbers on their own without
relying on external tools.

Figure 1 and Figure 2 show the distribution of random numbers
between 0 to 255 when generated 10000 times. These generations
were done using the described method in Section 3 and do not use
any function call.

Even without the randomness tests, we can see the distribution
is not random, and each model favors a specific set of numbers.
For Gemini 1.5 Pro Fig: 1, the top 3 Preferred Numbers are 161 (16
occurrences),138 (15 occurrences), and 235 (15 occurrences). For
Mistral Fig:2, this behavior is even more clustered, with the cluster
being in the middle with 234 (7 occurrences), 243 (6 occurrences),
and 230 (also 6 occurrences).

However, when we have Gemini with function calling enabled,
we see in Fig 3 the numbers being almost evenly distributed for
10,000 random number generation. This is where we observe that
the model is defaulting to the workflow as depicted in Figure 4.
Things take a bit different turn when we have 100,000 random num-
bers generated with Gemini using function calling, as we see in

Prompts

Contain "random"

v
Code creation tool I

LLm

M v

LLM Inference

Codes generate
No Tool random output

Figure 4: LLM function call workflow.

Number Occurrences in CSV

600

500 4

400

QCccurrences

300

200

100

100 150
Numbers

Figure 5: Gemini 1.5 with function calling (100k).

Figure 5 where almost the whole spectrum of numbers is evenly dis-
tributed apart from Number 1, which disproportionately is chosen
730 times.

4.2 Shuffling Results

This section analyzes the results of the shuffle method obtained
through our experimental process.

4.2.1 Method. We focus on evaluating the effectiveness of differ-
ent shuffling methods and quantifying the degree of randomness
achieved using an entropy-based metric. We aim to gain insights
into the factors influencing randomness generation in these models
by analyzing the entropy values obtained from various LLMs and
shuffling scenarios.

To assess the randomness generation capabilities of LLMs, we
designed experiments centered around shuffling a deck of playing
cards. This task provides a well-defined and quantifiable measure
of randomness, allowing for a systematic evaluation of different
LLMs and shuffling methods. We employed two primary shuffling
scenarios: (1) Local shuffle, where the LLM generates Python code
executed to shuffle the deck, and (2) LLM shuffle, where the LLMs
directly shuffle the deck without external code.

To quantify the degree of randomness achieved in the shuffled
decks, we utilized the entropy measure described earlier. Our en-
tropy definition grades the quality of the unknown shuffling method
by measuring pairwise distances between two cards. In the context
of card shuffling, higher entropy values correspond to greater ran-
domness in the sequence of cards. We varied the number of shuffle
rounds (128 to 2048) and recorded the corresponding entropy values
for all the tested scenarios.

Evaluating the Quality of Randomness and Entropy in Tasks Supported by Large Language Models

Table 3: Entropy results for the card shuffling experiments.

Shuffle rounds | Local GPT Gemini

128 0.874451358681846 0.861846152487087 0.87337156361593
256 0.897806026358848 0.876740097767342 0.899403147801315
512 0.899562541724958 0.895595748483194 0.908432001491059
786 0.916425927773246 0.905871556497765 0.910063521198634
1024 0.915989771924721 0.909819923462218 0.912599250807944
1280 0.914072526105781 0.915665610283595 0.913379487780489
1536 0.918177419740495 0.918220137760354 0.917924657467474
1792 0.921352692988455 0.921004938696014 0.923022991807562
2048 0.923277055991329 0.924444147944848 0.92356798431639

We conducted experiments with several LLMs, including variants
of GPT, Gemini, and Llama. For each LLM, we systematically varied
the number of shuffle rounds (from 128 to 2048) in both Local and
LLM shuffle scenarios. This allowed us to observe how the degree
of randomness changed with increased rounds of shuffling, and
identify potential convergence patterns.

Table 3 summarizes the entropy results for the card shuffling
experiments conducted with GPT, Gemini, and the local shuffle
scenarios.

As the number of shuffle rounds increases, the entropy values
for the local, GPT, and Gemini shuffles exhibit a clear trend of con-
vergence toward a high entropy value. The entropy values for all
three are remarkably close across all the shuffle rounds. This sug-
gests that the LLMs demonstrate a comparable ability to generate
random shuffles given sufficient number of shuffling rounds.

To further investigate the generalizability of our findings, we
conducted a card shuffling experiment using the Llama LLM. Table
4 presents the entropy results for Llama using the GPT shuffle
scenario.

Table 4: Entropy results of Llama card shuffles.

Rounds 128 256 512 1024
Entropy 0.7869377 0.7885018 0.805581 0.8087705

The Llama 3.1 8b exhibits consistently lower entropy values com-
pared to GPT and the local shuffles, suggesting potential limitations
in its ability to generate random sequences. This discrepancy could
be attributed to differences in model architecture, training data, or
specific prompting techniques used.

Using the defined entropy measurement, we compare the entropy
of GPT card shuffles with the result of the locally shuffled cards. To
reduce the token count, we asked GPT to shuffle ten cards up to
2048 times (rounds). Local card shuffles were performed using the
Python card shuffle code returned from GPT. The entropy results
indicate that there is almost no difference between the result of
GPT and the result of local shuffles.

It is often assumed that adjusting the temperature parameter in
LLMs can significantly improve the randomness of their outputs.
However, our experiments suggest that this might not always be the
case. For specific tasks, tweaking the temperature settings may not
lead to substantial changes in the underlying concepts generated by
the LLM, even if the specific words used vary. This observation high-
lights the need for alternative approaches to enhance randomness
in LLMs, potentially focusing on refining prompting techniques,

Conference’17, July 2017, Washington, DC, USA

incorporating stochastic elements in the model architecture, or
exploring different sampling methods.

4.3 Analysis of LLM Generated Passwords

This analysis compares the randomness quality of the password
sequences created by the LLMs. In these test scenarios, the LLMs
were instructed to generate random passwords of a certain length
with characters chosen from the English alphabet (both the lower
and uppercase letters), decimal digits, and a set of special characters.
Randomness of the generated passwords were tested with the same
NIST randomness test tools.

Table 5: Percentage of test outcomes for LLM generated pass-
word sequences.

Generation Methods and LLM OK SUSPECT KO

GPT 44.4% 11.1%, 44.5%
Gemini 15 33.3% 11.1% 55.6%
Phi-3 0% 11.1% 88.9%
Gemma 2 27B 0% 0% 100%

The results indicate that the password sequences generated by
the LLMs exhibit poor entropy and low quality randomness. The
percentage of the failed NIST randomness tests was high for all the
evaluated LLMs. Examining the generated passwords by Gemma 2
and Phi-3 show that the generated password sequences contained
repeated passwords, or repeated substrings.

4.4 Summary of Factors Affecting LLMs
Capability on Handling of Randomness

While LLMs can exhibit variability in their outputs, achieving true
randomness remains challenging due to their deterministic training
process and inherent biases[1]. These models are trained on massive
datasets, learning to predict the next word in a sequence based
on patterns and relationships within the data[30]. While enabling
impressive language generation capabilities, this process can limit
their ability to produce truly random outputs [34].

Several factors contribute to LLMs limitations in handling tasks
involve randomness:

e Bias in the training data: If the training data contains bi-
ases or predominantly reflects specific patterns, the model’s
output may be skewed, even when randomness is desired [31].

e Limited knowledge update: LLMs cannot update their
knowledge base in real-time, hindering their ability to in-
corporate new information and adapt to changing contexts,
which is crucial for generating random outputs based on the
latest information [3].

e Lack of true understanding: LLMs do not possess gen-
uine comprehension of the text they generate, which can
lead to non-sensical or irrelevant output, especially when
dealing with complex or nuanced concepts that require ran-
domness [6].

Despite these limitations, LLMs have shown surprising capabili-
ties in certain scenarios, such as generating numbers from specific
distributions without explicit programming. This suggests potential
for improvement and further research to enhance their handling of
randomness.

Conference’17, July 2017, Washington, DC, USA

Potential solutions include improving the diversity of train-
ing data [10], developing new algorithms to generate random se-
quences [2], incorporating feedback mechanisms to refine the per-
formance of the model [4], and fine-tuning task mixtures to improve
generalization. Additionally, embracing and leveraging the inherent
randomness of LLMs, particularly in creative applications, can be a
viable approach [9].

Furthermore, controlling randomness with parameters such as
temperature and top p allows users to fine-tune the balance between
predictability and variability in LLM outputs [9]. These parameters
provide a degree of control over the generation process, enabling
users to influence the randomness and creativity of the model’s
responses.

4.5 Ability to Follow Prompt Instructions

During experimentation, we made the following observations. Firstly,
for some models, particularly those with small size, the ability to
precisely follow prompt instructions is sometimes poor compared
to larger models. For example, the output may not always be in the
format requested by the prompt instructions. To fix this, in certain
cases, it requires post-processing of the outputs to convert them
into format that can be processed by the randomness analysis tools.
Secondly, when not emphasized in the prompts, LLMs may output
programming code for the requested task instead of producing the
outputs based on the inputs. For example, when asked to shuffle
cards, a LLM may give a card shuffle Python code as response. We
mitigated this issue with more specific prompts to indicate that
the output should not be code. Thirdly, some models occasionally
do not perform the requested number of randomization steps. For
instance, when asked to shuffle cards 1,000 times, a model may
shuffle only 50 times. Since we repeated data collection with many
trials and computed entropy over a large number of outputs across
trials, this has been less than a problem because we can resume
from where it left off.

5 Reproducibility Framework

The stochastic nature of Large Language Models (LLMs) presents
significant challenges to the scientific principle of reproducibility.
To address this, we established a rigorous framework to ensure the
experiments presented in this paper can be reliably and accurately
replicated, combining methodological constraints, task-specific in-
terpretations of reproducibility, and a commitment to open artifact
availability. A primary source of non-determinism in LLMs is the
sampling strategy; therefore, to create a consistent baseline, all
interactions were conducted with the temperature parameter
set to 0. This greedy decoding approach makes the generation
process deterministic for a given prompt and model state, which
is essential for evaluating core capabilities. We posit that repro-
ducibility for tasks involving randomness is achieved not through
identical outputs, but through consistent statistical properties. Ac-
cordingly, for direct generation tasks like random numbers and
strings, reproducibility is assessed by applying the NIST Statisti-
cal Test Suite (sts-2.1.2) [25] to generated sequences, where a
successful replication involves passing or failing the same statis-
tical tests. For indirect tasks like card shuffling, reproducibility is
defined by the convergence of statistical entropy, using a metric

that measures pairwise distances between items (detailed in Section
3.5), with successful replication indicated by convergence to values
statistically indistinguishable from those in Table 3 and Table 4.

6 Limitations

Our study has several limitations that should be acknowledged.
First, the evaluation is based on a specific set of LLMs and tasks,
and the results may not be generalizable to other LLMs or tasks.
Another limitation is the inherent nature of transformer architec-
tures. We run all our experiments with temperature 0 to facilitate
reproducibility. However, that also introduces a certain determin-
ism when generating random numbers by prompting. That makes
our results and work, dependent on prompting. Finally, since our
evaluation includes closed-weight models, the lack of access to
the internal workings of these models makes it difficult to fully
understand and control the factors that influence their random-
ness generation capabilities. Future work will explore the use of
open-weight models and more transparent evaluation methods and
provide deeper insights into the mechanisms underlying random-
ness in LLMs.

7 Related Works

The evaluation of randomness generation in LLMs is an emerg-
ing field of study. Hopkins and Renda [14] provided one of the
first empirical evaluations of LLMs as distribution samplers, es-
tablishing key metrics and highlighting performance differences
between autoregressive and non-autoregressive sampling. Liu [19]
extended this by focusing on GPT-4’s ability to generate random
numerical sequences, revealing that the model often compensates
for uniformity by sacrificing independence. More recently, Harrison
[13] compared LLM and human performance on random number
generation, finding that models may still not match human-level
capabilities in this specific task. Our work builds directly on these
foundational studies by providing a more comprehensive evalua-
tion framework that includes a wider variety of direct and indirect
randomness tasks (numerical, character, and shuffling), applies the
full NIST suite of randomness tests for a more rigorous assessment,
and analyzes a broader set of contemporary LLMs.

Our focus on a rigorous reproducibility framework also situ-
ates this paper within the broader conversation on the challenges
of reproducibility in machine learning research. The difficulty of
replicating results in computational science, often termed the "re-
producibility crisis," is particularly acute in deep learning due to
numerous sources of non-determinism [15]. Even with fixed ran-
dom seeds, subtle variations in software libraries (e.g., cuDNN ver-
sions), hardware (e.g., GPU architecture), and the non-deterministic
nature of certain parallelized floating-point operations can lead to
divergent outcomes [27].

In response, the machine learning community has proposed
various best practices to mitigate these issues. Pineau et al. [24]
introduced a widely recognized checklist for reproducibility, en-
couraging the publication of not only code but also model weights,
hyperparameters, and detailed execution environments. The use of
containerization technologies like Docker has also been advocated
as a method to encapsulate the full software stack, ensuring that
dependencies and system configurations can be perfectly replicated

Evaluating the Quality of Randomness and Entropy in Tasks Supported by Large Language Models

[15]. Our work contributes to this effort by not only adhering to
these principles through the public release of our code and exper-
iment artifacts but also by proposing a task-specific definition of
reproducibility for stochastic LLM evaluations, where statistical
consistency, rather than identical output, serves as the benchmark
for a successful replication.

8 Ethical Implications and Responsible
Disclosure

The findings of this study, which highlight significant deficien-
cies in the ability of Large Language Models (LLMs) to generate
high-quality randomness, carry substantial ethical implications. As
LLMs are increasingly integrated into a wide array of applications,
from consumer-facing tools to enterprise-level systems, a misun-
derstanding of their limitations in stochastic processes could lead
to predictable, insecure, and biased outcomes. The demonstrated
weakness in generating random passwords, for instance, poses a
direct security risk. If developers or end-users mistakenly trust
an LLM to generate cryptographic material or unique identifiers,
the resulting outputs could be vulnerable to adversarial prediction
and compromise system security. This aligns with concerns raised
by Bourtoule et al. [11] regarding the unforeseen failure modes of
machine learning systems when deployed in critical environments.

Furthermore, the tendency of LLMs to exhibit biases, as noted in
Section 4.4, can be amplified when randomness is expected but not
properly delivered. For example, in a system designed to randomly
assign resources or opportunities (e.g., in randomized clinical trials
or automated scheduling), a biased "random" process could lead to
systematically unfair or inequitable outcomes, perpetuating societal
biases present in the training data [22]. This underscores the ethical
imperative for developers and researchers to be transparent about
the capabilities and limitations of their models.

Consequently, we have a responsibility to disclose these findings
in a manner that informs without causing undue alarm or enabling
malicious actors. Our approach to responsible disclosure involves
two key actions. First, by publishing this research in a peer-reviewed
venue, we aim to alert the academic and industrial communities
to these potential vulnerabilities, encouraging the development of
more robust systems and best practices. Second, we advocate for
clear guidelines and warnings within developer documentation for
LLMs, explicitly cautioning against their use as a primary source of
entropy for security-sensitive or fairness-critical applications. This
aligns with the principle of "transparency” in Al ethics, which calls
for clear communication about how Al systems operate and where
they might fail [14]. We believe that a proactive and transparent
approach is the most effective way to mitigate the risks associated
with the misuse of LLMs in contexts requiring true or high-quality
randomness.

9 Conclusions

To gain a better understanding of LLM-based agents’ capabilities
in handling tasks that involve randomness, we developed a set
of experiments and tested several LLMs. Our analysis included
evaluating the quality of randomness using metrics like entropy
and well established NIST randomness test-suite. The results show
that while LLMs can mimic randomness to a certain extent, they still

Conference’17, July 2017, Washington, DC, USA

struggle to achieve high quality randomness. This study contributes
valuable insights into the capabilities and limitations of LLMs in
generating random outputs.

Acknowledgments

This research was supported in part by the Google Developer Ex-
perts program, which provided Google Cloud research credits to
enable our experiments.? Additionally, we gratefully acknowledge
the financial and collaborative support of the NATO Science for
Peace and Security (SPS) Programme3, which fosters international
cooperation in scientific research.

References

[1] 2023. AI’s Dicey Reputation: Are LLMs Really Just Random Stochastic Ma-
chines? https://promptengineering.org/ais-dicey-reputation-are-1llms-really-
just-random- stochastic-machines/

[2] 2023. How to Get Better Outputs from Your Large Language Model | NVIDIA
Technical Blog. https://developer.nvidia.com/blog/how-to-get-better-outputs-
from-your-large-language-model/

[3] 2024. 10 Biggest Limitations of Large Language Models. https://www.projectpro.
io/article/llm-limitations/1045

[4] 2024. LLM Challenges in Development: Key Insights. https://www.labellerr.com/
blog/challenges-in-development-of-1lms/

[5] 2024. xmco: A python tool used to run statistical tests on random data. https:
//github.com/xmco/

[6] Novita AL 2024. All You Need to Know about the Limitations of Large Language
Models. https://medium.com/@marketing

[7] David Aldous and Persi Diaconis. 1986. Shuffling Cards and Stopping Times.
The American Mathematical Monthly 93, 5 (May 1986), 333-348. doi:10.1080/
00029890.1986.11971821

[8] Lawrence E. Bassham, Andrew L. Rukhin, Juan Soto, James R. Nechvatal, Miles E.

Smid, Elaine B. Barker, Stefan D. Leigh, Mark Levenson, Mark Vangel, David L.

Banks, Nathanael Alan Heckert, James F. Dray, and San Vo. 2010. SP 800-22 Rev.

1a. A Statistical Test Suite for Random and Pseudorandom Number Generators for

Cryptographic Applications. Technical Report. Gaithersburg, MD, USA.

Marie-Alice Blete. 2023. LLMs: Determinism & Randomness. TL;DR: While working

with GPT-3.5 Turbo. https://medium.com/@mariealice.blete/llms-determinism-

randomness-36d3f3f1f793

[10] Andrew Bouras. 2024. Integrating Randomness in Large Language Models: A

Linear Congruential Generator Approach for Generating Clinically Relevant
Content. arXiv preprint arXiv:2407.03582 (2024).

[11] Lucas Bourtoule, Varun Chandrasekaran, Christopher A Choquette-Choo, Hen-

grui Jia, Adelin Travers, Baiwu Zhang, David Lie, and Nicolas Papernot. 2021.

Machine unlearning. In 2021 IEEE symposium on security and privacy (SP). IEEE,

141-159.

Persi Diaconis, R.L Graham, and William M Kantor. 1983. The mathematics of

perfect shuffles. Advances in Applied Mathematics 4, 2 (1983), 175-196. doi:10.

1016/0196-8858(83)90009-X

[13] Yu Du, Fangyun Wei, and Hongyang Zhang. 2024. AnyTool: Self-Reflective,

Hierarchical Agents for Large-Scale API Calls. arXiv:2402.04253 [cs.CL] https:
//arxiv.org/abs/2402.04253

[14] Luciano Floridi and Josh Cowls. 2019. A unified framework of five principles for
Al in society. Harvard Data Science Review 1 (1)(2019).

[15] Odd Erik Gundersen and Sigbjern Kjensmo. 2018. State of the art: Reproducibil-

ity in artificial intelligence. In Proceedings of the AAAI conference on artificial

intelligence, Vol. 32.

Aspen K Hopkins and Alex Renda. 2023. Can LLM generate random numbers?

evaluating llm sampling in controlled domains. Sampling and Optimization in

Discrete Space (SODS) ICML 2023 Workshop.

Sihao Hu, Tiansheng Huang, Fatih Ilhan, Selim Tekin, Gaowen Liu, Ramana

Kompella, and Ling Liu. 2024. A survey on large language model-based game

agents. arXiv preprint arXiv:2404.02039 (2024).

Wenyue Hua, Xianjun Yang, Mingyu Jin, Zelong Li, Wei Cheng, Ruixiang Tang,

and Yongfeng Zhang. 2024. Trustagent: Towards safe and trustworthy llm-based

agents through agent constitution. In Trustworthy Multi-modal Foundation Models
and Al Agents (TiFA).

Dong Huang, Qingwen Bu, Jie Zhang, Xiaofei Xie, Junjie Chen, and Heming

Cui. 2023. Bias assessment and mitigation in llm-based code generation. arXiv

preprint arXiv:2309.14345 (2023).

[o

[12

=
&

o
=

(18

[19

This material is based upon work supported by the Google Cloud Research Credits
program.
3See https://www.nato.int/cps/en/natohq/78209.htm

https://promptengineering.org/ais-dicey-reputation-are-llms-really-just-random-stochastic-machines/
https://promptengineering.org/ais-dicey-reputation-are-llms-really-just-random-stochastic-machines/
https://developer.nvidia.com/blog/how-to-get-better-outputs-from-your-large-language-model/
https://developer.nvidia.com/blog/how-to-get-better-outputs-from-your-large-language-model/
https://www.projectpro.io/article/llm-limitations/1045
https://www.projectpro.io/article/llm-limitations/1045
https://www.labellerr.com/blog/challenges-in-development-of-llms/
https://www.labellerr.com/blog/challenges-in-development-of-llms/
https://github.com/xmco/
https://github.com/xmco/
https://medium.com/@marketing
https://doi.org/10.1080/00029890.1986.11971821
https://doi.org/10.1080/00029890.1986.11971821
https://medium.com/@mariealice.blete/llms-determinism-randomness-36d3f3f1f793
https://medium.com/@mariealice.blete/llms-determinism-randomness-36d3f3f1f793
https://doi.org/10.1016/0196-8858(83)90009-X
https://doi.org/10.1016/0196-8858(83)90009-X
https://arxiv.org/abs/2402.04253
https://arxiv.org/abs/2402.04253
https://arxiv.org/abs/2402.04253
https://www.nato.int/cps/en/natohq/78209.htm

Conference’17, July 2017, Washington, DC, USA

[20] Alekya Jonnala. 2024. How Large Language models (LLM) help enterprises
enhance customer experiences. Journal Homepage: http://www. ijmra. us 13, 11
(2024).

[21] Qiang Liu. 2023. Does gpt-4 play dice? Chinaxiv (2023).

[22] Ninareh Mehrabi, Fred Morstatter, Nripsuta Saxena, Kristina Lerman, and Aram
Galstyan. 2021. A survey on bias and fairness in machine learning. ACM com-
puting surveys (CSUR) 54, 6 (2021), 1-35.

[23] Kai Mei, Xi Zhu, Wujiang Xu, Wenyue Hua, Mingyu Jin, Zelong Li, Shuyuan
Xu, Ruosong Ye, Yinggiang Ge, and Yongfeng Zhang. 2025. AIOS: LLM Agent
Operating System. arXiv:2403.16971 [cs.OS] https://arxiv.org/abs/2403.16971

[24] Joelle Pineau, Philippe Vincent-Lamarre, Koustuv Sinha, Vincent Lariviére, Alina
Beygelzimer, Florence d’Alché Buc, Emily Fox, and Hugo Larochelle. 2021. Im-
proving reproducibility in machine learning research (a report from the neurips
2019 reproducibility program). Journal of machine learning research 22, 164 (2021),
1-20.

[25] Andrew Rukhin, Juan Soto, James Nechvatal, Miles Smid, Elaine Barker, Stefan
Leigh, Mark Levenson, Mark Vangel, David Banks, Alan Heckert, et al. 2001. A sta-
tistical test suite for random and pseudorandom number generators for cryptographic
applications. Vol. 22. US Department of Commerce, Technology Administration,
National Institute of

[26] Pranab Sahoo, Ayush Kumar Singh, Sriparna Saha, Vinija Jain, Samrat Mondal,

and Aman Chadha. 2024. A systematic survey of prompt engineering in large

language models: Techniques and applications. arXiv preprint arXiv:2402.07927

(2024).

David Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips, Diet-

mar Ebner, Vinay Chaudhary, Michael Young, Jean-Francois Crespo, and Dan

Dennison. 2015. Hidden technical debt in machine learning systems. Advances

in neural information processing systems 28.

Samaneh Shafee, Alysson Bessani, and Pedro M Ferreira. 2024. Evaluation of llm

chatbots for osint-based cyber threat awareness. arXiv preprint arXiv:2401.15127

(2024).

Yifan Song, Weimin Xiong, Dawei Zhu, Wenhao Wu, Han Qian, Mingbo Song,

Hailiang Huang, Cheng Li, Ke Wang, Rong Yao, Ye Tian, and Sujian Li. 2023.

RestGPT: Connecting Large Language Models with Real-World RESTful APIs.

[27

[28

[29

[30

[31

(32]

(34

[35

%
2

arXiv:2306.06624 [cs.CL] https://arxiv.org/abs/2306.06624

Andreas Stoffelbauer. 2023. How Large Language Models Work. From zero to
ChatGPT. https://medium.com/data-science-at-microsoft/how-large-language-
models-work-91¢c362f5b78f

Nguyen Ha Thanh. 2023. Bias, Randomness, and Risks of Large Lan-
guage Models in High-stakes Domains | by Nguyen Ha Thanh | Medium.
https://medium.com/@nguyenthanh.asia/bias-randomness-and-risks-of-large-
language-models-in- high- stakes-domains-987bc2c1517¢

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothée Lacroix, Baptiste Roziére, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023. Llama: Open and efficient foundation language models. arXiv
preprint arXiv:2302.13971 (2023).

L. N. Trefethen and L. M. Trefethen. 2000. How Many Shuffles to Randomize a
Deck of Cards? Proceedings: Mathematical, Physical and Engineering Sciences 456,
2002 (2000), 2561-2568. http://www.jstor.org/stable/2665604

Katherine Van Koevering and Jon Kleinberg. 2024. How Random is Random?
Evaluating the Randomness and Humaness of LLMs’ Coin Flips. arXiv preprint
arXiv:2406.00092 (2024).

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang,
Zhiyuan Chen, Jiakai Tang, Xu Chen, Yankai Lin, et al. 2024. A survey on large
language model based autonomous agents. Frontiers of Computer Science 18, 6
(2024), 186345.

Hongqiu Wu, Yan Wang, Xingyuan Liu, Hai Zhao, and Min Zhang.
2024. Instruction-Driven Game Engines on Large Language Models.
arXiv:2404.00276 [cs.Al] https://arxiv.org/abs/2404.00276

XMCO Team. 2024. Random Test Tool. GitHub repository. Available at:
https://github.com/xmco/random [Accessed 12 May 2024].

Yikuan Yan, Yaolun Zhang, and Keman Huang. 2024. Depending on yourself
when you should: Mentoring LLM with RL agents to become the master in
cybersecurity games. arXiv preprint arXiv:2403.17674 (2024).

Ke Yang, Yao Liu, Sapana Chaudhary, Rasool Fakoor, Pratik Chaudhari, George
Karypis, and Huzefa Rangwala. 2024. AgentOccam: A Simple Yet Strong Baseline
for LLM-Based Web Agents. arXiv:2410.13825 [cs.Al] https://arxiv.org/abs/2410.
13825

https://arxiv.org/abs/2403.16971
https://arxiv.org/abs/2403.16971
https://arxiv.org/abs/2306.06624
https://arxiv.org/abs/2306.06624
https://medium.com/data-science-at-microsoft/how-large-language-models-work-91c362f5b78f
https://medium.com/data-science-at-microsoft/how-large-language-models-work-91c362f5b78f
https://medium.com/@nguyenthanh.asia/bias-randomness-and-risks-of-large-language-models-in-high-stakes-domains-987bc2c1517c
https://medium.com/@nguyenthanh.asia/bias-randomness-and-risks-of-large-language-models-in-high-stakes-domains-987bc2c1517c
http://www.jstor.org/stable/2665604
https://arxiv.org/abs/2404.00276
https://arxiv.org/abs/2404.00276
https://github.com/xmco/random
https://arxiv.org/abs/2410.13825
https://arxiv.org/abs/2410.13825
https://arxiv.org/abs/2410.13825

	Abstract
	1 Introduction
	2 Background
	2.1 The Need for Entropy and Randomness
	2.2 Randomness as a Trustworthiness Problem
	2.3 Evaluation of Randomness in LLM Responses

	3 Measuring LLMs' Capability on Handling Tasks Involving Randomness
	3.1 Factors Considered in the Experiments Design
	3.2 Experiment Categories
	3.3 Numerical Value Related Tasks
	3.4 Characters Related Tasks
	3.5 Shuffling Related Tasks
	3.6 Direct Generation
	3.7 Evaluation Metrics
	3.8 Remark on Reproducibility

	4 Experimental Results and Analysis
	4.1 Analysis of NIST Randomness Tests
	4.2 Shuffling Results
	4.3 Analysis of LLM Generated Passwords
	4.4 Summary of Factors Affecting LLMs Capability on Handling of Randomness
	4.5 Ability to Follow Prompt Instructions

	5 Reproducibility Framework
	6 Limitations
	7 Related Works
	8 Ethical Implications and Responsible Disclosure
	9 Conclusions
	Acknowledgments
	References

